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When the analytical oversight is corrected, a new meaning may 
be attached to the heat capacity function. Indeed, the meaning 
of the heat capacity function is contingent entirely upon how we 
formulate the equilibrium constant for the system. In this way 
the heat capacity function, either real or anomalous, provides a 
revealing mechanistic tool. 
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Phosphorus-31 nuclear magnetic resonance (31P NMR) spec­
troscopy has been used extensively in studies of nucleic acid 
constituents.1"6 Recently 31P NMR has been used to investigate 
helical complexes of larger oligonucleotides7 and polynucleotides.8,9 

In the study of (dG-dC)8
7 and poly(dG-dC),8 an important feature 

of the 31P NMR spectrum of the helical complex is the conversion 
of a single resonance in low salt into two resonances in high salt. 
The high salt spectrum is consistent with the results of X-ray 
diffraction studies of oligomers of (dG-dC),10 which indicate two 
different phosphate-backbone conformations, one for ..GpC. and 
another for ..CpG.. sequences (Z-DNA). Studies of the crystal 
structure of d-pApTpApT11 and a variety of existing physical and 
chemical data on poly(dA-dT) lead to the hypothesis of an al­
ternating B-DNA structure12 for poly(dA-dT>poly(dA-dT). In 
this model the phosphate backbone is different for ..ApT.. and 
.,TpA.. sequences in the helical complex. This hypothesis has 
received experimental support from recent 31P NMR studies9 of 
poly(dA-dT) where two phosphorus resonances are observed, 
depending on the temperature and salt concentration. These data 
support the general contention that base sequence can affect 
nucleic acid conformation.13 
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Figure 1. Phosphorus-31 NMR spectra of (A) poly(A+)-poly(A+), (B) 
poly(A)-poly(U), and (C) poly(A>2poly(U). Conditions are those in­
dicated in Table I. 

Table I. P-31 Chemical Shifts0 of RNA Helical Complexes 

complex^ chemical shift, ppm 

poly(A+)-poly(A+) 
PoIy(A)-PoIy(Uf 
poly(I)-poly(C)d 

poly (I)-POIy(C12U) 
poly(A)-2poly(U) 

-5.10 
-4 .10,-4 .45 
-4 .03 , e -4 .54 f 

-4 .03, -4 .55 
-3 .39* -3 .84 , -4.36 

0 Maximum intensity position of resonance with respect to in­
ternal trimethyl phosphate, 30 0C. b Complex is 20-30 mM in 
base pair, in aqueous solution (20% D2O) containing 0.003 M 
EDTA, 0.04 M sodium phosphate and NaCl. The solution pHs are 
6.8-7.2 except for poly(A+)-poly(A+) (pH 5.6). Concentrations 
of NaCl are 0.05 M, poly(A+)-poly(A+); 0.1 M, poly(A)-poly(U); 0 
and 0.6 M, poly(I)-poly(C); 0.6 M, poly(I)-poly(C12U); 0.4 M, 
poly(A)-2poly(U). c Chemical shifts of noncomplexed poly(A) 
and poly(U) are -3.97 and -3.85, respectively. " Chemical shifts 
of noncomplexed poly(I) and poly(C) are -3.70 and -4.22, respec­
tively. e Complexed phosphates of poly(I) strand. f Complexed 
phosphates of poly(C) strand. g Complexed phosphates of 
poly(U) strand involved in Hoogstein base pair with poly(A). 

Variation in the structure of the phosphate backbone is also 
apparent in fibers of nucleic acids.14'15 Fibers of RNA homo-
polynucleotide complexes have been extensively studied by X-ray 
diffraction to deduce their helical conformations. From these 
studies it is apparent that phosphate-backbone conformations may 
be dependent not only on the base sequence but also on the nature 
of the association of bases through hydrogen bonds in poly­
nucleotide complexes. In the cases of complexes with poly(A), 
three types of base-base association are observed: poly(A+)> 
poly(A+),16 poly(A)-poly(U),17 and poly(A)-2poly(U).18 The 
general feature of the phosphate-backbone conformation of the 
poly(A+)-poly(A+) and poly(A)>poly(U) complexes is that of C2 
symmetry with respect to the helical axis of the double-stranded 
complex (i.e., the conformation of the phosphate backbone of each 
strand is identical). In contrast, the fiber structure of the poly-
(A)-2poly(U) complex is deduced as one in which a unique 
phosphate-backbone conformation exists for each of the three 
strands. 
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We have studied these three polyribonucleotide complexes19 

in aqueous solution by 31P NMR spectroscopy (80.6 MHz) above 
(spectra not shown) and below the thermal denaturation tem­
perature (Tm) (Figure 1) of the helical complex. Above the Tm, 
the spectral lines are generally sharp (Ai^2 < 2 Hz) and consist 
of one or two resonances of expected intensity,22 reflecting the 
homopolymer stoichiometry of the respective complexes. Below 
the Tm (Figure 1), the resonances are somewhat broader (Ae1/2 
~ 20-50 Hz), presumably reflecting effects due to reduced 
correlation times of the phosphates of the base-paired complexes. 
Additional features of the spectra of these complexes are as follows: 
(a) poly(A+)-poly(A+) has one phosphorus resonance;23 (b) 
poly(A)>poly(U) has two resonances of approximately equal in­
tensity; (c) poly(A)-2poly(U) has three resonances, each of ap­
proximately equal intensity. The chemical shift positions of the 
resonances of these and additional polynucleotide complexes are 
listed in Table I. An unanticipated feature of these spectra is 
the observation of multiple resonances in three of the double-
stranded helical complexes [poly(A)-poly(U), poly(I)-poly(C), and 
poly(I)-poly(C12U)] .25 Plausible explanations for the observation 
of more than one resonance are (1) two equal populations of helical 
complexes having different phosphate-backbone conformations, 
each having C2 symmetry with an exchange rate slow on the NMR 
time scale, (2) a single helical complex having C2 symmetry but 
containing local phosphate magnetic anisotropy27 (e.g., due to 
solution environment30), and (3) a single helical complex where 
the two strands have different phosphate-backbone conformations. 
Various studies of these complexes (effects of temperature, ionic 
strength, RNA-DNA hybrid complexes) do not support the first 
explanation32 and provide tentative assignments33 of some of the 
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base-paired resonances in Table I. The second and third expla­
nations are both considered possible contributors to the multiple 
resonances observed. Our collective results from these complexes 
in various salts35 of poly(A)-2poly(U) at conditions where the 
triple-to-double-stranded conversion occurs, and the observed three 
resonance pattern of poly(A)-2poly(U) anticipated from the unique 
strand conformations of the fiber,18a strongly suggest that the third 
explanation (strands with different phosphate-backbone confor­
mations) is a reasonable contributor to the multiple resonances 
observed in these complexes. Additional experiments are necessary 
to unequivocally assign the resonances to specific strands and to 
determine the relative contributions of mechanisms 2 and 3 to 
the observed chemical shifts. However, irrespective of the ex­
planation of the resonance multiplicity, these results illustrate the 
utility of the 31P NMR technique for probing the phosphate 
backbone of individual strands in helical complexes. 
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(33) (a) The poly(I)-poly(C) helical resonances are assigned by comparison 
to poly(dI)-poly(C) (-4.27 and -4.66 ppm) by assuming the two resonances 
most similar in chemical shift are those from the RNA strand, (b) In poly-
(A)-2poly(U), the Hoogstein base-paired poly(U) strand (lowest field reso­
nance) was assigned by comparison of the poly(A)-poly(U) and poly(A)-
2poly(U) spectra and by a temperature study of poly(A)-2poly(U) at low salt 
where the 3 -» 2 + 1 stranded conversion34 occurs. At this condition the lowest 
field resonance disappeared and reappeared as a sharp line with a chemical 
shift expected for free poly(U), while the intensity of the other two higher-field 
resonances remained constant. 
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Reactions in aqueous solution containing ferrous sulfate are 
among the best understood of radiolytic reaction mechanisms, but 
hitherto unsuspected reactions must be taking place when large 
radiation doses are applied instantaneously in the presence of added 
chloride.1 We have recently found indications that yields under 
these conditions might be explicable if HO2- radicals reduce Cl2.

2 

This communication reports independent confirmation of this 
reaction, obtained in a system designed to demonstrate it. 
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